A NOVEL TETRAVALENT SULFUR COMPOUND, 1,3,6-TRIPHENYLIMIDAZO[1,2-c]THIA IV ZOLE; SYNTHESIS AND PERIPHERAL CYCLOADDITION REACTION

Otohiko TSUGE*, Shuji KANEMASA, and Takayoshi HAMAMOTO
Research Institute of Industrial Science, and Department of Molecular Science
and Technology, Interdisciplinary Graduate School of Engineering Sciences,
Kyushu University, Kasuga, Kasuga-shi, Fukuoka 816

A novel tetravalent sulfur compound, 1,3,6-triphenylimidazo[1,2-c]thia^{IV}zole, was synthesized, which reacted with N-(p-tolyl)maleimide as both an azomethine ylide and a thiocarbonyl ylide 1,3-dipole yielding four 1:1 adducts that contained each endo and exo isomers. The cycloadducts of azomethine ylide were found to isomerize into those of thiocarbonyl ylide through a retro 1,3-dipolar cycloaddition reaction. It was offered that this nitrogen-bridged tetravalent sulfur compound was to be designated as a bi-perifunctional compound.

In the previous papers, it has been reported that the thiocarbonyl ylide 1,3-dipole of 1,3-dipole of 1,3-dipole of 1,3-dipole phenylthia IV zolo[3,4-a]benzimidazole reacts with electron-deficient acetylenes and olefins in a stereo-and regioselective manner. 1,2 The imidazo[1,2-c]thia IV zole \underline{A} , a benzo-free analog of the above tetravalent sulfur compound, is expected to function not only as a thiocarbonyl ylide \underline{B} but also an azomethine ylide 1,3-dipole \underline{C} .

Three examples for the synthesis of nitrogen-bridged tetravalent sulfur compound that carries two functional parts of periphery have been reported, ³⁻⁵ two of them actually demonstrating the contribution of both functionalities. Thus a thia ^{IV}zolo[3,4-b]indazole ⁴ and pyrrolo[1,2-c]thia ^{IV}zole derivative ⁵ cycloadded to N-phenylmaleimide as an azomethine imine and azomethine ylide, respectively, while both of them reacted with dimethyl acetylenedicarboxylate as a thiocarbonyl ylide. No conceivable explanation, however, has been represented about what led to such different reactions.

In the present communication, we wish to report the synthesis of 1,3,6-triphenylimidazo[1,2-c]-thia^{IV}zole, a new tetravalent sulfur system with a bridgehead nitrogen atom, and its unusual reactions in which it has contributed in two ways, as an azomethine ylide and a thiocarbonyl ylide 1,3-dipole, toward a dipolarophile, N-(p-tolyl)maleimide. In addition, we would like to propose that a word "bi-perifunctional" is to be used to express the unique nature of this kind of compound. Synthesis of 1,3,6-Triphenylimidazo[1,2-c]thia^{IV}zole 1.

Treatment of 4-amino-2,5-diphenylthiazole 2^{7} with an equivalent amount of phenacyl bromide in ethanol at room temperature precipitated 3, mp 122-123 °C (dec.), as a colorless solid in 60 % yield. The product 3 is rather unstable suffering a decomposition on its purification by recrystallization.

But, it was given a satisfactory analysis as well as spectral data 8 for the assigned structure, 4-(2-bromo-1-phenylethylideneamino)-2,5-diphenylthiazole. When heated under reflux in xylene for 0.5 h, $\underline{3}$ readily cyclized into 1,3,6-triphenyl-5H-imidazo[1,2-c]thiazolium bromide $\underline{4}$, mp 236.5-240 $^{\circ}$ C, in 83 $\frac{1}{2}$ yield. This salt $\frac{1}{2}$ corresponds to a protonated form of the tetravalent sulfur compound $\underline{1}$ (Scheme 1).

Deprotonation of $\underline{4}$ with triethylamine in chloroform gave a halogen-free product $\underline{1}$, mp 194-196.5 °C, as orange needles (from ethanol) in 97 % yield. Structural determination of $\underline{1}$, 1,3,6-triphenylimidazo[1,2-c]thia ivzole, was based on the analysis and spectral data, 9 especially on the electronic spectrum that showed an absorption maximum at 487 nm (log ε 3.92). This nitrogen-bridged tetravalent sulfur compound $\underline{1}$, the second isolated example of this kind of compounds, 10 has such a remarkable thermal stability that it is recovered unchanged even when refluxed in xylene for 6 h. 11 Peripheral Cycloaddition Reactions of $\underline{1}$ with N-(p-Tolyl) maleimide $\underline{5}$.

The reaction of $\underline{1}$ with an equivalent amount of N-(p-tolyl)maleimide $\underline{5}$ in dry benzene, under nitrogen at room temperature for 24 h, gave a mixture of two isomeric 1:1 adducts which were isolated through a column chromatography on silica gel using benzene as an eluent: $\underline{6}$, mp 172.5-174 °C, as yellow needles in 26 % yield and 7, mp 197-199 °C, as red prisms in 47 % yield (Scheme 2).

The structures of $\underline{6}$ and $\underline{7}$ were determined as the endo and exo [3 + 2] cycloadducts to the azomethine ylide 1,3-dipole of $\underline{1}$, respectively, on the basis of the spectral data. ¹² The ¹H-NMR spectra indicate the presence of three consecutive methine hydrogens whose coupling constants are 9.5 (J_{4a-4b}) and 9.0 Hz (J_{4b-7a}) for $\underline{6}$, and 3.0 (J_{4a-4b}) and 9.5 Hz (J_{4b-7a}) for $\underline{7}$, supporting the endo and exo configurations.

The relative yields between $\underline{6}$ and $\underline{7}$ were found to depend on the reaction conditions such as reaction temperature, time and solvent as shown in Table 1. Below 80 °C, the only isolated products are $\underline{6}$ and $\underline{7}$. The reaction in pyridine at room temperature is favorable for the formation of endo adduct $\underline{6}$, whereas the reaction in benzene at 80 °C predominantly gives the exo adduct $\underline{7}$. At 110 °C

Table :	1.	Гhе	Reaction	of	1	with	<u>5</u> .

Reaction Conditions					Products (yield %)			
Temperature	Solvent	Time	Total Yield(%)	<u>6</u>	7	8	9	
room temp.	benzene	24 h	73	26	47	_	_	
room temp.	pyridine	24	89	52	37	-	_	
reflux (80 ℃)	benzene	3	70	10	60	_	-	
80 °C	pyridine	0.5	73	34	39	-	_	
reflux (110 °C)	toluene	2	68	+	9	11	48	
reflux (115 ℃)	pyridine	1.5	68	3	6	8	51	
reflux (140 °C)	xylene	1	70	_	_	10	60	

(reflux in toluene) or at 115 $^{\circ}$ C (reflux in pyridine), the other two products, $\underline{8}$ and $\underline{9}$, are formed together with small amounts of two adducts 6 and 7.

Scheme 2

When the same reaction was carried out in xylene under reflux for 1 h, no traces of $\underline{6}$ and $\underline{7}$ were obtained but instead the two isomeric 1:1 adducts were afforded by a column chromatography on silica gel: $\underline{8}$, mp 215-216 \mathbb{C} , as colorless needles in 10 $\underline{8}$ yield and $\underline{9}$, mp 259.5-262 \mathbb{C} , as colorless needles in 60 $\underline{8}$ yield. The structures of $\underline{8}$ and $\underline{9}$ were elucidated as the endo and exo [3 + 2] cycloadducts to the thiocarbonyl ylide 1,3-dipole of $\underline{1}$, respectively, on the basis of the spectral data. In the 1H -NMR spectrum the methine hydrogens of $\underline{8}$ (4.65 and 4.82 ppm) are observed in considerably lower fields than those of $\underline{9}$ (3.84 and 4.07 ppm) since those of $\underline{8}$ are deshielded by the sulfur atom. When treated with sodium methoxide in methanol or refluxed in pyridine for 48 h, both $\underline{8}$ and $\underline{9}$ easily eliminated hydrogen sulfide to give the imidazo[1,2-a]pyrrolo[3',4'-c]pyridine $\underline{10}$, mp >300 \mathbb{C} , in excellent yields. The formation of 10 is consistent with the structures of $\underline{8}$ and $\underline{9}$.

It is concluded that the four isomeric cycloadducts, $\underline{6}$ to $\underline{9}$, all lie in a thermal equilibrium, and that $\underline{6}$ is the initial kinetically controlled product and $\underline{9}$ is the final thermodynamically controlled one, on the basis of the following isomerization reactions: i) At the very initial stage of the reaction of $\underline{1}$ with $\underline{5}$ in benzene at 80 °C, $\underline{6}$ is the only product (by ${}^{1}\text{H-NMR}$); ii) A mixture of $\underline{6}$ and $\underline{7}$ ($\underline{6}/\underline{7}=1/12$)

is obtained by refluxing $\underline{6}$ or $\underline{7}$ in benzene for 18 h; iii) A mixture of $\underline{8}$ and $\underline{9}$ ($\underline{8}/\underline{9}=1/2$) is obtained by refluxing $\underline{6}$ or $\underline{7}$ in xylene for 4 h; iv) A mixture of $\underline{8}$ and $\underline{9}$ ($\underline{8}/\underline{9}=1/6$) is obtained by refluxing $\underline{8}$ or $\underline{9}$ in xylene for 24 h. The corresponding exo cycloadducts $\underline{7}$ and $\underline{9}$ are found to be more thermally stable than the endo ones $\underline{6}$ and $\underline{8}$ from the equilibrium compositions between $\underline{6}$ and $\underline{7}$ (1:12) and $\underline{8}$ and $\underline{9}$ (1:6).

The endo-exo isomerizations described above are confirmed to take place through a retro 1,3-dipolar cycloaddition reaction by the facts that the parent compounds $\underline{1}$ and $\underline{5}$ have been detected during the isomerization of $\underline{6}$ or $\underline{7}$ into their mixture in benzene-d₆ at 80 °C and of $\underline{8}$ or $\underline{9}$ into their mixture in xylene at 140 °C (by ${}^{1}\text{H-NMR}$ and thin layer chromatography). The isomerization into regio isomers would have taken the same reaction pathways (Scheme 3).

References

- 1. O. Tsuge, H. Shiraishi, and T. Takata, Chem. Lett., 1369 (1980).
- 2. O. Tsuge, H. Shiraishi, and M. Noguchi, Chem. Lett., 213 (1981).
- 3. H. Shimoharada, S. Ikeda, S. Kajigaeshi, and S. Kanemasa, Chem. Lett., 1237 (1977).
- 4. K. T. Potts and J. L. Marshall, J. Org. Chem., 41, 129 (1976).
- 5. J. M. Kane, J. Org. Chem., 45, 5396 (1980).
- 6. A bi-perifunctional compound is designated to be the one that carries two functionalities along the periphery of cyclic system. The first bi-perifunctional compound has been reported by Potts and his co-worker: K. T. Potts and D. McKeough, J. Amer. Chem. Soc., 96, 4268 (1974).
- 7. E. C. Taylor, Jr., J. A. Anderson, and G. A. Berchtold, J. Amer. Chem. Soc., 77, 5444 (1955).
- 8. $\underline{3}$: IR 1610 cm⁻¹; ¹H-NMR (CDCl₃) δ 4.89 (2H, s), 7.00-8.30 (15H, m); MS m/e 352 (M⁺-HBr).
- 9. <u>1</u>: IR 1585 cm⁻¹; ¹H-NMR (CDCl₃) $\delta 6.80$ -8.50 (16H, m, ArH + =CH-); UV $\lambda_{\text{max}}^{\text{EtOH}}$ (log ϵ) 487 (3.92), 310 (3.85), 255 nm (4.04); MS m/e 352 (M⁺).
- 10. The first isolated example for tetravalent sulfur compounds with bridgehead nitrogens has been shown by Potts and his co-worker (see ref. 4).
- 11. Any spot other than that of $\underline{1}$ has not been detected in the TLC, while $\underline{1}$ partly decomposed to give a few spots after 24 h.
- 12. <u>6</u>: IR 1775, 1705 cm⁻¹ (CO); ¹H-NMR (CDCI₃) δ2.19 (3H, s), 3.72 (1H, dd, J=9.5, 9.0 Hz, 4b-H), 4.16 (1H, d, J=9.0 Hz, 7a-H), 5.14 (1H, d, J=9.5 Hz, 4a-H), 6.25-8.00 (19H, m); MS m/e 539 (M⁺).
 - $\underline{7}$: IR 1780, 1710 cm⁻¹ (CO); ¹H-NMR (CDCl₃) δ 2.26 (3H, s), 3.31 (1H, dd, J=9.5, 3.0 Hz, 4b-H), 4.24 (1H, d, J=9.5 Hz, 7a-H), 5.48 (1H, d, J=3.0 Hz, 4a-H), 6.20-8.25 (19H, m); MS m/e 539 (M⁺).
- 13. 8: IR 1780, 1710 cm⁻¹ (CO); ¹H-NMR δ2.06 (3H, s), 4.65, 4.82 (each 1H, d, J=9.0 Hz, CH), 6.80 (1H, s, =CH-), 6.54-8.22 (19H, m); MS m/e 539 (M⁺).

 9: IR 1770, 1720 cm⁻¹ (CO); ¹H-NMR δ2.25 (3H, s), 3.84, 4.07 (each 1H, d, J=6.5 Hz, CH), 6.88 (1H, s, =CH-), 6.90-7.88 (19H, m); MS m/e 539 (M⁺).
- 14. The deshielding effect of the bridged sulfur atom in this kind of system has been discussed in the following reports: M. P. Cava, M. Behforouz, G. E. M. Husbands, and M. Srinivasan, J. Amer. Chem. Soc., 95, 2561 (1973) and K. T. Potts and D. McKeough, J. Amer. Chem. Soc., 96, 4268 (1974). See also refs. 1 and 2.

(Received July 29, 1982)